RIEMANN PROBLEMS FOR NONSTRICTLY HYPERBOLIC 2x2 SYSTEMS OF CONSERVATION LAWS

نویسندگان

  • DAVID G. SCHAEFFER
  • MICHAEL SHEARER
  • D. G. SCHAEFFER
چکیده

The Riemann problem is solved for 2 x 2 systems of hyperbolic conservation laws having quadratic flux functions. Equations with quadratic flux functions arise from neglecting higher order nonlinear terms in hyperbolic systems that fail to be strictly hyperbolic everywhere. Such equations divide into four classes, three of which are considered in this paper. The solution of the Riemann problem is complicated, with new types of shock waves, and new singularities in the dependence of the solution on the initial data. Several ideas are introduced to help organize and clarify the new phenomena.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

Construction of the 2d Riemann Solutions for a Nonstrictly Hyperbolic Conservation Law

In this note, we consider the Riemann problem for a twodimensional nonstrictly hyperbolic system of conservation laws. Without the restriction that each jump of the initial data projects one planar elementary wave, six topologically distinct solutions are constructed by applying the generalized characteristic analysis method, in which the delta shock waves and the vacuum states appear. Moreover...

متن کامل

Contemporary Mathematics Prototypes for Nonstrict Hyperbolicity in Conservation Laws

Many conservation law systems that arise in continuum mechanics fail to be strictly hyperbolic; this situation may even arise generically in some dimensions. By examining simple systems in a single space variable, where the mathematical theory of weak solutions has been developed, one may try to gain insight into how more realistic systems will behave. However, even in simple systems, there is ...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

The Riemann Problem near a Hyperbolic Singularity : the Classification of Solutions of Quadratic Riemann Problems

The purpose of this paper is to classify the solutions of Riemann problems near a hyperbolic singularity in a nonlinear system of conservation laws. Hyperbolic singularities play the role in the theory of Riemann problems that rest points play in the theory of ordinary differential equations: Indeed, generically, only a finite number of structures can appear in a neighborhood of such a singular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010